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INTRODUCTION

The turbulent boundary layer (TBL) pressure field is an important source of cabin noise during cruise
of high subsonic and supersonic commercial aircraft [1-3, 6].  The broadband character of this excitation
field results in an interior noise spectrum that dominates the overall sound pressure level (SPL) and
speech interference metrics in the forward and midcabins of many aircraft.  In the authors' previous
study [9], sound transmission through an aircraft fuselage, modeled by two concentric cylindrical
sandwich shells and excited by a TBL statistical model was investigated analytically.  An assessment
of point and global structural vibration levels and resulting interior noise levels was obtained for
different TBL models, flight conditions and fuselage structural designs.  However, due to the
complication of the shell structure, the important noise transmission mechanisms were difficult to
discern.  Previous experience has demonstrated that a fundamental understanding of the range of modes
(or wavenumbers) generated by the TBL source both in the structure and the acoustic cavity is key to the
development of both active and passive control technologies.

In an initial effort to provide this insight, the objective of this paper is to develop an analytical
model of sound transmission through a simple unstiffened cylindrical aluminum shell excited by a TBL
pressure field.  The description of the turbulent pressure field is based on the Corcos formulation [2] for
the cross-spectral density (CSD) of the pressure fluctuations.  The coupled shell and interior and
exterior acoustic equations are solved for the structural displacement and the interior acoustic response
using a Galerkin approach to obtain analytical solutions.  Specifically, this study compares the real
part of the normalized CSD of the TBL excitation field, the structural displacement and the interior
acoustic field.  Further the modal compositions of the structural and cavity response are examined and
some inference of the dominant mechanism of noise transmission is made.

MATHEMATICAL MODEL

A schematic of the system configuration considered is shown in Fig. 1, a finite cylindrical shell
having hard end caps with radius R, length L, and wall thickness h immersed in fluid media.  The mass
density and sound speed are denoted as ρ1 and c1 and ρ2 and c2 for the external and internal fluids,
respectively.  Turbulent boundary layer pressure fluctuations convected by the flow in the external fluid
along the streamwise direction excite the surface of the shell.  A detailed analysis of the pressure
fluctuations models has been presented in the references [2, 3, 6] and will not be repeated here.  We
shall instead, simply quote an expression for the spatial-frequency CSD of the pressure fluctuations Sp

as following,
Sp(ξ , η , ω)  =  Φ(ω) A(ξ ,ω) B(η ,ω) e iωξ/Uc (1)
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where i = √–1, ω the frequency, ξ  = x1–x2 the streamwise separation along the longitudinal x direction
and η = R(θ1–θ2) the crossflow separation along the circumferential θ direction, Uc the convective
velocity of the flow, and Φ the power spectrum.  Quantities A and B are exponential decaying functions
along ξ and η.

Taking a Fourier transform of a Helmholz equations for the external and internal fluids and
Donnell-Mushtari shell equation yields,

(∇ 2 + iωβ1 + k1
2) p1  =  0 ,     (∇ 2 + iωβ2 + k2

2) p2  =  0 (2)

L(ω)[w]  =  p1 – p2 – p (3)
where ∇ 2 = ∂(r ∂/∂r)∂r + (∂2/∂θ2)/r2 + ∂2/∂x 2 in which r represents the radial cylindrical coordinate;
k1 = ω/c1 and k2 = ω/c2 are wave numbers, β1 and β2 acoustic damping, and, p1 and p2 acoustic pressures of

the external and internal fluids, respectively; p is the pressure generated by the TBL, L is a
differential operator whose explicit form can be found in text book [4], and w is the radial displacement
component of the shell.

The flexible boundary conditions applied at both the outer and inner surfaces of the shell relate the
pressures p1 and p2 to the shell displacement w

∂p1

∂r r =R

 = ρ1ω2w ,     ∂p2

∂r r =R

 = ρ2ω2w (4)

A simply supported shell having hard end caps is represented by the following boundary
conditions.

w  =  ∂
2w

∂x 2
  = 0 ,   ∂p2

∂x
  =  0 ,   at x = 0, L (5)

Following the previous analysis [9], the displacement w is expanded in the orthogonal base
functions Xmn

w  =  ∑
m = 1, n = 0

∞
wmn Xmn(x,θ)  =  ∑

m = 1, n = 0

∞
wmn sin(mπx/L) cos(nθ) (6)

where the modal coefficients wmn are unknown.  Similarly, expand the turbulent pressure loading p as

p  =  ∑
m = 1, n = 0

∞
pmn Xmn(x,θ) ,   pmn  =  εn

πL
 [

0

L

 
0

2π
p(x,θ,ω)Xmn(x,θ)dxdθ ] (7)

where εn are Neumann factors, εn = 1 for n= 0 and εn = 2 otherwise.
It is convenient to expand the pressure p1 and p2 which satisfy Eq. (2) as

p1 = p1mn Hn
2(σ1mr) Xmn∑

m = 1, n = 0

∞
 ,   p2 = p2mn Jn(σ2mr) Xmn∑

m = 1, n = 0

∞
(8)

where Hn
2 is a Hankel function of the second kind and Jn is a Bessel function of the first kind of order n,

respectively, σ1m
2  = k1

2 – mπ /L 2 – iωβ1 and σ2m
2  = k2

2 – mπ /L 2 – iωβ2, and p1mn and p2mn are unknown
modal coefficients.

Substituting Eqs. (6) to (8) into (2) through (4) and then solving these coupled equations
simultaneously for wmn, p1mn, p2mn yield,

{wmn, p1mn, p2mn}  =  {Hwmn, Hp1mn, Hp2mn} pmn (9)
where

{Hwmn, Hp1mn, Hp2mn}  =  {1/(i ω), – Zmn
J /Jmn, – Zmn

H  /Hmn}/(Zmn
S  +Zmn

H  – Zmn
J ) (10)

Zmn
H    =  iρ1 ωHmn

2 /(σ1m Hmn
2' ),   Zmn

J    =  iρ2 ωJmn/(σ2m Jmn
' ) (11)

The primes in above equation denote derivative with respect to the argument and Zmn
S  is the shell

modal impedance.  
The cross-spectral density for the wall displacement response and interior pressure takes the form

Sw  =  ∑
m = 1, n = 0

∞

|Hwmn|2 sin(mπx1/L) sin(mπx2/L) cos(nθ1) cos(nθ2)Spmn (12)

Sp2  =  ∑
m = 1, n = 0

∞

|Hp2mn|
2
 |Jn(σ2mr1) Jn

*(σ2mr2) cos(mπx1/L) cos(mπx2/L) cos(nθ1) cos(nθ2)Spmn (13)
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where * denotes the complex conjugate, 0≤r1, r2 ≤R, 0≤x1, x2 ≤L, –π≤θ1, θ2≤π, and the modal spectral
density of the generalized forces Spmn is defined by

Spmn  =  Re | 4Φ(ω) εn (πLR1)–1 (α 'β)–1|×[1–(–1)ne–βR1π] × { 1+ [n /(βR1)]2}
–1×

       {1+[mπ/(α 'L)]2+2[1–(–1)me–α 'L]×(mπ)2(α 'L)–3}×{1+[mπ/(α 'L)]2}
–2 (14)

In Corcos model, α ' = (0.11+ i)ω/Uc and β  = 0.77ω/Uc.  
It should be pointed out that the modal basis function for the pressure p2, Eq. (8), does not satisfy

the force boundary conditions in Eq. (5).  Therefore, it is necessary to expand the orthogonal base

functions Xmn in terms of cos(mπx/L) cos(nθ).  The result gives the modal coefficient Hp2mn as following

Hp2mn  =  ∑
j = 0, j≠m

∞
εn m [1–(–1)m–j]

π (m 2–j 2)
 Hp2jn (15)

Since both the excitation and cylindrical shell are symmetric in θ, integration of Eqs. (12) and (13)
yields the average CSD

{Sw, Sp2}  =  ∑
m = 1, n = 0

∞

{Swmn, Sp2mn}  =  ∑
m = 1, n = 0

∞

{|Hwmn|2, |Hp2mn|2}Spmn/2 (16)

Summation of the components either m or n in above equation yields the modal CSD

{Swm, Sp2m}  =  ∑
n = 0

∞

{Swmn, Sp2mn} ,   {Swn, Sp2n}  =  ∑
m = 1

∞

{Swmn, Sp2mn} (17)

RESULT AND DISCUSSION

The geometry and material properties of the shell chosen herein are taken from reference [5] for
this study.  The aluminum shell has the overall dimensions of R = 0.83m, L = 3.65m, and h  = 0.0017m.
Young's modulus and Poisson's ratio are E = 72GPa and µ = 0.3, respectively and the mass density is ρ =
2740kg/m3.  A structural loss factor is modeled as a small imaginary part of both Young's modulus
E(1+i0.05) and a corresponding shear modulus.  The value of acoustic damping is chosen as 0.005
providing representative damping levels.  It is assumed that the aircraft is in flight at 35,000ft
altitude (ρ1 = 0.3795kg/m2, c1 = 296.556m/s) and is pressurized at 10,000ft (ρ2 = 0.9041kg/m3, c2 =
328.558m/s).  The free stream velocity of the turbulent flow is taken from Maestrello [6] for U∞ =
425.48m/s and then the convection velocity is defined by Uc = 0.8U∞.  

The result presented in the following will be two parts:  Part one will address the coherence
functions of the two-point spatial correlation of the excitation, shell response (displacement), and the
cavity response (pressure).  It is pointed out [8] that the modal spectra for the shell and cavity
responses are more useful from the viewpoint of developing noise control systems than the highly
detailed physical variables.  Therefore, part two will examine the modal response of the cross-
spectral density for both the shell and acoustic cavity responses.  A dominant (or highly excited) mode
is indicated by a dark square.  The values in all the following plots are normalized by its own maximum
and only the real part is considered.  

Figures 2 and 3 show the CSD of the excitation (TBL pressure fluctuations, Sp) and the corresponding
shell and acoustic responses (Sw and Sp2) versus the spatial separation in the streamwise ξ/L and cross-
streamwise η/(2πR) for ω = 300Hz and 2500 Hz, respectively.  The reference coordinate is selected as x2

= 0.48L to avoid the nodes at which some modes can not be excited.  Therefore, a slightly asymmetric
behavior is shown in Fig. 2.  Since the excitation is independent of the circumferential coordinate
selected, the reference coordinate is θ2 = 0.  Inspection of Fig. 2 reveals that the envelope of the shell
response decays with an increase of the spatial separation, in a similar manner as does the excitation.
The rate of decrease depends on the frequency of the forcing function.  The results illustrate that the
shell response at two widely separated points is generally correlated at low frequency ω = 300Hz and is
uncorrelated at high frequency ω = 2500Hz.  However, for the acoustic response, we do not observe a
similar decaying relationship as for the shell response.  The new feature can be explained by the
following:  When the TBL pressure fluctuations excite the shell at a particular frequency, many shell
modes are excited as resonant modes.  However, only some of these shell resonant modes are efficiently
coupled to those cavity modes near resonance.  Therefore, the dissipation of the acoustic CSD along the
spatial separation can not be seen when an insufficient number of cavity modes are excited.  If the shell
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radius is increased (actually increasing the excited cavity modes), a stronger decay of the CSD is
observed.  

Figure 4 shows the modal cross-spectral density of the shell response Swn and the acoustic response
Sp2n versus the circumferential mode n and frequency ω.  High mode levels occur in the shell response in
a line between 13≤n≤22 over the range of frequencies plotted, as shown in Fig. 4(a).  A strong filtering
effect is observed in comparing the cavity mode response and the shell wavenumber mode response.
Most low order acoustic cavity modes between 1≤n≤7 are strongly excited, but most of the high order
circumference modes are reduced in the cavity response.

Figures 5 and 6 display the modal cross-spectral density of the shell and acoustic responses Swmn and
Sp2m n for ω = 100Hz and 300Hz, respectively.  There is strong shell response over a range of resonant
shell modes and this range expands to higher order modes with an increase of frequency.  This
demonstrates that with increasing frequency, an expanded locus of resonant modes is responding.  For
the acoustic response, these resonant shell modes drive a forced response of the corresponding acoustic
modes and in addition excite some low order cavity modes into resonance.  Similar behavior was
observed for the modal structural and acoustic response from point force excitation [8].  This shows tha t
the CSD of the cavity response is not only characterized by the "forced" modes generated by the shell
vibration, but also by the cavity modes, especially for high frequency.  

CONCLUSION

In this paper, an analytical model for prediction of the CSD of both the shell and acoustic
responses of a finite cylindrical shell due to TBL excitation based on the Corcos TBL model was
developed.  The real part of the normalized CSD at two-points versus a spatial separation of the
forcing field and response fields are calculated and presented.  Modal behavior is examined in the low
frequency range (100 Hz to 300Hz).  The following conclusions can be drawn:

The CSD of the shell response are generally correlated at  low frequency and the envelope of the
correlation function decays with an increase of the spatial separation.  The decay occurs much more
rapidly at higher frequencies.  However, the correlation function of the CSD of the cavity response
does not decay with an increase of the spatial separation and frequency. With wavenumber filtering,
highly excited cavity modes are reduced in number compared with the shell modes.  Most of the cavity
mode response is forced by the shell modes.  However, some low order cavity resonant modes are
excited.
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Figure 1.  Schematic of system configuration.
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Figure 2.  The normalized cross-spectral density versus the spatial differences ξ/L in the streamwise direction:
(a) ω = 300Hz; (b) ω = 2500Hz.
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Figure 3.  The normalized cross-spectral density versus the spatial differences ξ/L in the cross-streamwise direction:
(a) ω = 300Hz; (b) ω = 2500Hz.
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         Circumferential mode, n                                                        Circumferential mode, n  

Figure 4.  Modal cross-spectral density  versus circumferential mode and frequency:     varying from
0 to -30dB.  (a) shell response Swn; (b) cavity response Sp2n.

    
     Longitudinal modal number, m                                                                      Longitudinal modal number, m  
Figure 5.  Modal cross-spectral density Swmn versus longitudinal and circumferential modes m and n:

   varying from 0 to -30dB.   (a) ω = 100Hz; (b) ω = 300Hz.

    
      Longitudinal modal number, m                                                                     Longitudinal modal number, m  
Figure 6.  Modal cross-spectral density Sp2mn versus longitudinal and circumferential modes m and n:

   varying from 0 to -30dB.   (a) ω = 100Hz; (b) ω = 300Hz.
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